Comparaison et sélection de modèles intégro-différentiels (IDE): mode d’emploi des scripts QGis/R.

Cet article est le mode d’emploi des scripts R pour QGis mis à votre disposition. Il a été mis à jour pour prendre en compte les modifications apportées à la version 1.3 des scripts.

Dans deux articles précédents (Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R et Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R(suite))nous avons vu comment calculer et ajuster un modèle intégro-différentiel à un ensemble de données spatio-temporelles, en utilisant R et QGis.

Dans l’article précédent, Comparaison et sélection de modèles intégro-différentiels (IDE): les principes, nous avons vu comment envisager la validation des modèles calculés et ajustés lors des deux premiers articles, et son corollaire, comment calculer des scores sur chaque version du modèle de manière à pouvoir choisir celui qui prédit le mieux les valeurs observées.

Nous verrons ici comment utiliser les scripts avec l’option validation du modèle, et, dans le prochain article, un exemple pratique avec les mêmes données des deux premiers articles.

Continuer la lecture de « Comparaison et sélection de modèles intégro-différentiels (IDE): mode d’emploi des scripts QGis/R. »

Comparaison et sélection de modèles intégro-différentiels (IDE): les principes.

Dans deux articles précédents (Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R et Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R(suite))nous avons vu comment calculer et ajuster un modèle intégro-différentiel à un ensemble de données spatio-temporelles, en utilisant R et QGis.

Pour le même ensemble d’observations nous avons vu que l’on pouvait jouer sur différents paramètres, principalement en calculant un noyau du modèle invariant dans l’espace ou un noyau variant dans l’espace.

Les différents résultats de modèles apparaissent, à priori, aussi plausibles les uns comme les autres. Nous verrons dans cette article comment évaluer la qualité du modèle pour pouvoir décider lequel retenir.

Continuer la lecture de « Comparaison et sélection de modèles intégro-différentiels (IDE): les principes. »

Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R(suite)

Dans l’article précédent, nous avons considéré le cas d’un noyau spatialement invariant, c’est-à-dire le cas où le noyau m(s,r;θp) n’est qu’une fonction de r s . Dans cet article, nous considérons le cas où un ou plusieurs des paramètres θ sont variables spatialement. De tels modèles sont nécessaires lorsque le processus spatio-temporel présente, par exemple, une dérive qui varie selon l’espace.

Mais il faut des données…

Pour modéliser de telles données, nous avons besoin d’un grand nombre de points temporels,disons au moins 15. Cela est important, car il est difficile d’obtenir des estimations raisonnables des paramètres spatialement répartis, à moins que les données couvrent une grande partie du domaine spatial pendant au moins quelques points de temps consécutifs.

Continuer la lecture de « Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R(suite) »

Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R

En écologie on se retrouve, très souvent, face à des processus qui sont liés à l’espace mais aussi qui évoluent dans le temps. Nous sommes maintenant habitués à l’analyse spatiale qui est devenu à la portée du plus grand nombre grâce aux SIG, tels QGis. Nous sommes beaucoup moins habitués à l’analyse temporelle qui est moins prise en compte par les SIG.

Analyse spatio-temporelle

Que dire alors de l’analyse spatio-temporelle, c’est à dire de l’analyse simultanée d’un processus variant dans l’espace et dans le temps? Comme pour l’analyse spatiale, un premier niveau pour aborder le processus qui nous intéresse est l’analyse exploratoire des données. Un deuxième niveau nous amène à essayer de comprendre les paramètres qui contrôlent le processus pour remplir les trous dans les données et réduire le « bruit » de nos observations. Enfin, au plus haut du traitement, nous pouvons modéliser statistiquement le processus et obtenir un outil qui nous permette une vision complétée de nos données (boucher les trous dans l’espace et le temps de nos observations), de trier les paramètres du processus et de quantifier leur importance, et finalement, de prévoir l’état futur de notre processus.

Continuer la lecture de « Modélisation spatio-temporelle avec une équation intégro-différentielle (IDE) avec QGis et R »

Tutoriel SCP:réussir un classement supervisé avec calcul de texture(3)-bandes RVB+calculs de texture

Dans cette série d’articles nous utilisons le plugin SCP de QGis pour effectuer un classement supervisé avec calcul de texture. Nous avons vu dans l’article précédent le traitement classique des trois bandes RVB des images photographiques de drone sur une zone littorale.

Dans cet article nous allons voir le traitement après calcul des valeurs de texture de ces mêmes images.

Continuer la lecture de « Tutoriel SCP:réussir un classement supervisé avec calcul de texture(3)-bandes RVB+calculs de texture »

Tutoriel SCP:réussir un classement supervisé avec calcul de texture(2)-bandes RVB

Dans cette série d’articles nous utilisons le plugin SCP de QGis pour effectuer un classement supervisé avec calcul de texture. Nous allons voir trois traitements différents pour la même zone littorale:

  • le traitement classique des trois bandes RVB des images photographiques de drone
  • le traitement après calcul des valeurs de texture de ces mêmes images
  • le traitement après calcul des composantes principales des valeurs de texture
Continuer la lecture de « Tutoriel SCP:réussir un classement supervisé avec calcul de texture(2)-bandes RVB »

Tutoriel SCP:réussir un classement supervisé avec calcul de texture(1)

Nous continuons la série d’articles sur la Classification supervisée d’images de drone en milieu littoral. La première étape, indispensable pour pouvoir bien gérer la sélection des bandes à utiliser pour chaque étape du traitement, est de décomposer l’image aérienne originale, comportant trois bandes : rouge, vert et bleu, en trois images séparées. Nous utilisons pour tout le traitement QGis et le plugin SCP.

Continuer la lecture de « Tutoriel SCP:réussir un classement supervisé avec calcul de texture(1) »

Classification supervisée d’images de drone en milieu littoral (3) : statistiques descriptives de texture

Dans l’article précédent (https://www.sigterritoires.fr/index.php/classification-supervisee-dimages-de-drone-en-milieu-littoral-2-calculs-de-texture/) nous avons vu deux groupes de mesure de texture, celui du contraste et celui de l’ordre. Nous verrons ici le troisième et dernier groupe, celui des statistiques descriptives

Groupe de statistiques descriptives de la mesure de texture GLCM

Le troisième groupe de mesures de la texture utilise des équations semblables à celles des statistiques descriptives courantes, comme la moyenne ou l’écart-type (ou la variance). Cependant, tous sont calculés en utilisant les entrées dans la GLCM, pas les valeurs de pixels d’origine.

Continuer la lecture de « Classification supervisée d’images de drone en milieu littoral (3) : statistiques descriptives de texture »

Classification supervisée d’images de drone en milieu littoral (2) : calculs de texture

Dans l’article précédent (https://www.sigterritoires.fr/index.php/classification-supervisee-dimages-de-drone-en-milieu-littoral-1-utilisation-de-la-texture/ ) nous avons vu comment calculer la matrice de co-occurrence de niveau gris (GLCM) qui est à la base des calculs de texture d’image.

Nous avions calculé les fréquences des paires de pixels présents dans notre fenêtre de calcul. Travailler avec des fréquences rend la comparaison entre fenêtrees diffcile. C’est pourquoi nous travaillerons avec une matrice « normalisée ».

Continuer la lecture de « Classification supervisée d’images de drone en milieu littoral (2) : calculs de texture »

Classification supervisée d’images de drone en milieu littoral (1) : utilisation de la texture

L’accessibilité des drones et des moyens logiciels d’acquisition d’images aériennes permet aujourd’hui d’avoir des couvertures d’images à des échelles extrêmement fines pour appuyer les travaux en environnement littoral. Des pixels de l’ordre du millimètre ne sont plus un rêve. Mais tout ce qu’on a gagné en définition par rapport aux images satellitaires, on l’a un peu perdu en ce qui concerne le multi spectral. Les images photographiques se cantonnent aux trois bandes Rouge-Vert-Bleu. On travaillait avec plus d’une dizaine de bandes spectrales et des pixels de 3 ou 5 mètres, on se retrouve avec des pixels d’un centimètre et seulement trois bandes spectrales. La classification supervisée qui nous permet rapidement de cartographier les différentes biocénoses a gagné en précision et perdu en discrimination.

Nous allons aborder dans une série d’articles un moyen de palier à cette perte de bandes spectrales en analysant la texture des images et en utilisant ces résultats pour affiner la discrimination de la classification supervisée.

Continuer la lecture de « Classification supervisée d’images de drone en milieu littoral (1) : utilisation de la texture »