Créer une carte de localisation avec QGis 3.4

Les cartes de localisation permettent une vision plus globale de la zone d’étude représentée sur la carte principale

Le principe est très simple: ce sont deux cartes en une seule mise en page. La carte de localisation aura une caractéristique particulière: on figera l’étendue, les couches affichées et la symbologie de ces couches une fois pour toutes. La seule variable sera le rectangle d’emprise qui, lui, est géré par QGis lui-même.

Pour commencer, cliquez sur le menu Projet->nouvelle mise en page ou ouvrez le gestionnaire de mise en page et créez une nouvelle mise en page.

Dans la fenêtre de mise en page, ajoutez la carte principale (menu Ajouter un élément -> Ajouter carte) et la carte de localisation (idem)

Notez alors que la carte principale est nommée carte 1 et la carte de localisation carte 2.

Vous allez commencer par la définition de la carte de localisation:

1- dans la fenêtre cartographique de QGis, zoomez le contenu de la fenêtre au niveau que vous souhaitez voir dans la carte de localisation.

2- affichez seulement les couches que vous souhaitez voir dans la carte de localisation en désactivant l’affichage des autres couches.

3- Modifiez, si nécessaire, la symbologie des couches visibles. Par exemple, l’épaisseur des traits est généralement plus fin pour la carte de localisation que pour la carte principale.

4-Vérifiez dans le gestionnaire de mise en page que le résultat correspond à vos souhaits. Pour cela, en ayant sélectionné la carte 2, cliquez sur Mise à jour de l’aperçu dans le panneau Propriétés principales

Dans le panneau couches, cochez les cases Verrouiller les couches et Verrouiller le style des couches. Pour assurer qu’il n’y aura pas d’autre modification, cochez la case de verrouillage de carte 2 dans la fenêtre Éléments.

Votre carte de localisation est configurée.

Vous allez maintenant vous occuper de la carte principale. Mettez la en forme (zoom, symbologie, etc…)

Une fois terminée la mise en page de la carte principale, il ne vous reste qu’à relier les deux cartes pour que la carte de localisation affiche l’emprise de votre carte principale.

Pour cela déverrouillez la carte 2, cliquez sur elle pour la sélectionner, ouvrez le panneau Aperçus de votre carte de localisation.

Cliquez sur le bouton + pour ajouter un aperçu dans la liste d’aperçus. Il sera nommé Aperçu 1.

Pour paramétrer l’aperçu, il faut indiquer quelle emprise il faut afficher. Dans Cadre de la carte, sélectionnez Carte 1

Vous pouvez modifier le style de l’emprise (couleur, contour, etc) en ouvrant le Style de cadre

A partir de ce point, si vous changez l’emprise de la carte principale, l’emprise affichée sur la carte de localisation sera modifiée automatiquement pour la représenter.

Tutoriel classification d’images avec QGis: 2.3- Les filtres spatiaux

Les filtres spatiaux représentent une autre méthode de traitement numérique utilisées pour le rehaussement d’une image. Ces filtres sont conçus de façon à faire ressortir ou à supprimer des caractéristiques spécifiques d’une image en se basant sur leur fréquence spatiale. La fréquence spatiale est liée au concept de texture. Elle fait référence à la fréquence de variation des différents tons qui apparaissent dans une image. Les régions d’une image où la texture est « rugueuse » sont les régions où les changements dans les tons sont abrupts; ces régions ont une fréquence spatiale élevée. Les régions « lisses » ont une variation des tons qui est plus graduelle sur plusieurs pixels; ces régions ont une fréquence spatiale faible. La méthode de filtrage spatial consiste à déplacer une « fenêtre » d’une dimension de quelques pixels (ex. : 3 sur 3, 5 sur 5, etc.) au-dessus de chaque pixel de l’image. On applique alors un traitement mathématique utilisant les valeurs des pixels sous la fenêtre et on remplace la valeur du pixel central par le résultat obtenu. La fenêtre est déplacée le long des colonnes et des lignes de l’image, un pixel à la fois, répétant le calcul jusqu’à ce que l’image entière ait été filtrée. En modifiant le calcul effectué à l’intérieur de la fenêtre, il est possible de rehausser ou de supprimer différents types de caractéristiques présents dans une image.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2.3- Les filtres spatiaux »

Ajouter Orfeo Toolbox dans QGis 3.X

Si vous avez utilisé le fournisseur de traitements Orfeo TB avec QGis 2.X et que vous le cherchez dans la nouvelle version 3, vous serez déçus. En effet, la réécriture du plugin Orfeo a pris un peu plus de temps que prévu et il ne fait plus partie des plugins installés par défaut.

Il reviendra, une fois tous les tests effectués. Mais en attendant, vous n’êtes pas obligés de vous en passer. Vous pouvez installer Orfeo dans la version 3, mais manuellement.

Voici la démarche à suivre.

Continuer la lecture de « Ajouter Orfeo Toolbox dans QGis 3.X »

Tutoriel classification d’images avec QGis: 2.2- Rehaussement des images

Pour commencer il faut bien comprendre que l’on applique le rehaussement des images afin de faciliter l’interprétation visuelle et la compréhension des images. Le rehaussement ne va pas changer les valeurs radiométriques des objets présents dans l’image, il va juste permettre à un observateur une meilleure vision de ces objets. Cette étape, donc, ne sert qu’à aider l’utilisateur à définir les échantillons d’apprentissage et les signatures à utiliser dans la classification.

Les images numériques ont l’avantage de nous permettre de manipuler assez facilement les valeurs enregistrées pour chaque pixel. Même s’il est possible d’effectuer les corrections radiométriques pour les effets de l’illumination solaire, les conditions atmosphériques et les caractéristiques des instruments utilisés avant de distribuer les images aux usagers, il peut s’avérer que l’image ne soit pas à son meilleur pour l’interprétation visuelle. Les systèmes de télédétection, et spécialement ceux qui utilisent une plate-forme spatiale, doivent être conçus de façon à pouvoir traiter les différents niveaux d’énergie propres aux cibles et à leur environnement, susceptibles d’être rencontrés dans une utilisation normale. Cette variation importante dans la réponse spectrale des différents types de cibles (ex. : forêt, désert, neige, eau, etc.) rend impossible l’application d’une correction radiométrique générale capable d’optimiser le contraste et les niveaux d’intensité dans chacune des conditions. Il faut donc faire un ajustement différent des tons en fonction de l’utilisation et de l’état de chacune des images.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2.2- Rehaussement des images »

Tutoriel classification d’images avec QGis: 2.1 Correction atmosphérique des images Landsat 8

Nous avons vu précédemment comment corriger les images Landsat pour avoir la réflectance TOA (top-of-atmosphere). Voilà un schéma qui va nous aider à comprendre la suite:

La réflectance que nous avons calculé est donc le % de lumière réfléchie par rapport à la totalité de la lumière visible incidente. Mais comme on le voit dans le schéma, le capteur du satellite mesure deux choses en même temps: la lumière réfléchie par nos cibles à la surface de la terre, plus la lumière diffusée par les particules en suspension dans l’air.

On peut pousser la correction atmosphérique des images satellites pour enlever la partie de lumière due à la diffusion.

Comme nous l’avons déjà dit, ceci n’a d’intérêt que si vous travaillez sur des images séparées dans le temps. Le pourcentage de diffusion étant le même pour l’ensemble d’une image, c’est du temps perdu de faire cette correction.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2.1 Correction atmosphérique des images Landsat 8 »

Tutoriel classification d’images avec QGis: 2- Prétraitement et exploration des données

On appelle fonctions de pré-traitement les opérations qui sont normalement requises avant l’analyse principale et l’extraction de l’information. Les opérations de pré-traitement se divisent en corrections radiométriques et en corrections géométriques. Les corrections radiométriques comprennent entre autres, la correction des données à cause des irrégularités du capteur, des bruits dus au capteur ou à l’atmosphère, et de la conversion des données afin qu’elles puissent représenter précisément le rayonnement réfléchi ou émis mesuré par le capteur. Les corrections géométriques comprennent la correction pour les distorsions géométriques dues aux variations de la géométrie Terre-capteur, et la transformation des données en vraies coordonnées (par exemple en latitude et longitude) sur la surface de la Terre.

Les fonctions de rehaussement ont pour but d’améliorer l’apparence de l’imagerie pour aider l’interprétation et l’analyse visuelles. Les fonctions de rehaussement permettent l’étirement des contrastes pour augmenter la distinction des tons entre les différents éléments d’une scène, et le filtrage spatial pour rehausser (ou éliminer) les patrons spatiaux spécifiques sur une image.

Les transformations d’images sont des opérations similaires à ceux de rehaussement de l’image. Cependant, alors que le rehaussement de l’image qui est normalement appliqué à une seule bande de données à la fois, la transformation de l’image combine le traitement des données de plusieurs bandes spectrales. Des opérations arithmétiques (c’est-à-dire addition, soustraction, multiplication, division) sont faites pour combiner et transformer les bandes originales en de « nouvelles » images qui montrent plus clairement certains éléments de la scène. Nous allons examiner certaines de ces opérations incluant les diverses méthodes de rapport de bande aussi appelé rapport spectral et un procédé appelé analyse des composantes principales qui est utilisée pour mieux représenter l’information en imagerie multispectrale.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2- Prétraitement et exploration des données »

Tutoriel classification d’images avec QGis: 1- Introduction

Tout d’abord, un avertissement: ce tutoriel ne s’adresse pas aux utilisateurs dont le traitement d’images spatiales est leur métier. Il s’adresse aux utilisateurs de SIG qui doivent se lancer dans le traitement d’images dans le but d’enrichir leur données. Le but est d’aplanir les écueils du débutant et de fournir quelques bases théoriques pour ne pas simplement suivre une recette de cuisine. Les aspects théoriques ne sont donc pas exhaustifs et on se permettra quelques approximations pour ne pas rendre le discours incompréhensible pour le néophyte.

Une grande partie des explications est tirée de l’excellent site de Ressources naturelles Canada, auxquelles nous avons ajouté toute la partie pratique avec QGis.  Vous trouverez le même tutoriel mais adapté aux outils proposé par ArcGis sur notre site.

Parmi la grande variété d’outil proposés par QGis pour réaliser le travail de classification d’images, nous utiliserons dans ce tutoriel:

  • le plug-in SEMI AUTOMATIC CLASSIFICATION
  • les outils de traitement de QGis

Le plug-in SEMI AUTOMATIC CLASSIFICATION est tellement performant que l’on pourrait se contenter de  lui pour l’ensemble du tutoriel. Mais dans ce cas il serait un boîte noire et vous ne sauriez pas faire ce qu’il fait. Nous verrons donc comment faire les différentes opérations sans utiliser le plugin (par exemple la correction atmosphérique) et après, nous verrons comment gagner du temps avec l’utilisation du plugin (en cochant une case pour la correction atmosphérique!).

Nous donnerons la marche à suivre pour les versions 2.18 et 3.4 de QGis.

Le tutoriel abordera les trois grandes phases du travail de classification d’images:

  • le prétraitement et l’exploration des données
  • la classification d’images à proprement parler
  • le post-traitement des classifications

Continuer la lecture de « Tutoriel classification d’images avec QGis: 1- Introduction »

Le format Geopackage et QGis 3


Un format ouvert pour l’information géospatiale

GeoPackage est un format compact, portable, auto-descriptif et ouvert, basé sur des normes, indépendant de la plate-forme et permettant de transférer des informations géospatiales.

Le standard GeoPackage est composé d’un ensemble de conventions pour stocker dans une base de données SQLite les éléments suivants :

  • des entités vectorielles
  • des matrices de tuiles d’images et de rasters à différentes échelles
  • des attributs (données non spatiales)
  • des extensions

Pour être clair, un GeoPackage est le conteneur SQLite et la norme de codage GeoPackage régit les règles et les exigences du contenu stocké dans un conteneur GeoPackage. Le standard GeoPackage définit le schéma d’un GeoPackage, notamment les définitions de table, les assertions d’intégrité, les limitations de format et les contraintes de contenu. Le contenu requis et pris en charge d’un GeoPackage est entièrement défini dans la norme. Ces fonctionnalités reposent sur une base commune et le mécanisme d’extension fournit aux développeurs une manière d’inclure des fonctionnalités supplémentaires dans leurs GeoPackages.

Continuer la lecture de « Le format Geopackage et QGis 3 »

Calculer des moyennes locales sur des polygones de Voronoï avec Qgis

Les cartes de Voronoï sont construites à partir d’une série de polygones formés autour de l’emplacement de chaque point d’échantillonnage.

Les polygones de Voronoï sont créés de sorte que chaque emplacement dans un polygone soit plus proche du point d’échantillonnage présent dans ce polygone que de tout autre point d’échantillonnage.

Dans l’article  sur l’analyse exploratoire des données, nous avons vu comment utiliser Geostatistical Analyst d’ArcGis pour construire et analyser les polygones de Voronoï.

Dans cet article nous verrons comment obtenir les mêmes résultats avec QGis. Continuer la lecture de « Calculer des moyennes locales sur des polygones de Voronoï avec Qgis »