Les données de bandes multispectrales différentes ont souvent une corrélation très élevée et contiennent de l’information similaire. Par exemple, les capteurs de la bande 4 et 5 de Landsat MSS (vert et rouge respectivement) produisent des images d’apparence visuelle très semblable étant donné que la réflectance pour le même type de surface est presque identique. Des transformations d’images basées sur des traitements statistiques complexes des données multispectrales peuvent être utilisées pour réduire la redondance des données et la corrélation entre les bandes. L’analyse des composantes principales est une transformation de ce genre. Le but de cette transformation est de réduire le nombre de dimensions (nombre de bandes) et de produire une compression de l’information de plusieurs bandes dans un nombre plus restreint de bandes. Les « nouvelles » bandes qui résultent de cette compression statistique sont appelées composantes. Ce procédé vise à maximiser (statistiquement) la quantité d’information (ou variance) des données originales dans un nombre restreint de composantes. Par exemple, l’analyse des composantes principales, peut transformer des données provenant de sept bandes du capteur TM/Landsat (Thematic Mapper) de façon à ce que les trois principales composantes de la transformation contiennent plus de 90% de l’information contenue dans les sept bandes initiales. L’interprétation et l’analyse de ces trois composantes, en les combinant visuellement ou numériquement, est plus simple et plus efficace que l’utilisation des sept bandes initiales. L’analyse des composantes principales ou d’autres transformations complexes peuvent être utilisées comme techniques de rehaussement visuel pour faciliter l’interprétation ou pour réduire le nombre de bandes qui seront fournies comme données d’entrée à une procédure de classification numérique.