Tutoriel SCP:réussir un classement supervisé avec calcul de texture(3)-bandes RVB+calculs de texture

Dans cette série d’articles nous utilisons le plugin SCP de QGis pour effectuer un classement supervisé avec calcul de texture. Nous avons vu dans l’article précédent le traitement classique des trois bandes RVB des images photographiques de drone sur une zone littorale.

Dans cet article nous allons voir le traitement après calcul des valeurs de texture de ces mêmes images.

Continuer la lecture de « Tutoriel SCP:réussir un classement supervisé avec calcul de texture(3)-bandes RVB+calculs de texture »

Tutoriel SCP:réussir un classement supervisé avec calcul de texture(2)-bandes RVB

Dans cette série d’articles nous utilisons le plugin SCP de QGis pour effectuer un classement supervisé avec calcul de texture. Nous allons voir trois traitements différents pour la même zone littorale:

  • le traitement classique des trois bandes RVB des images photographiques de drone
  • le traitement après calcul des valeurs de texture de ces mêmes images
  • le traitement après calcul des composantes principales des valeurs de texture
Continuer la lecture de « Tutoriel SCP:réussir un classement supervisé avec calcul de texture(2)-bandes RVB »

Classification supervisée d’images de drone en milieu littoral (3) : statistiques descriptives de texture

Dans l’article précédent (https://www.sigterritoires.fr/index.php/classification-supervisee-dimages-de-drone-en-milieu-littoral-2-calculs-de-texture/) nous avons vu deux groupes de mesure de texture, celui du contraste et celui de l’ordre. Nous verrons ici le troisième et dernier groupe, celui des statistiques descriptives

Groupe de statistiques descriptives de la mesure de texture GLCM

Le troisième groupe de mesures de la texture utilise des équations semblables à celles des statistiques descriptives courantes, comme la moyenne ou l’écart-type (ou la variance). Cependant, tous sont calculés en utilisant les entrées dans la GLCM, pas les valeurs de pixels d’origine.

Continuer la lecture de « Classification supervisée d’images de drone en milieu littoral (3) : statistiques descriptives de texture »

Classification supervisée d’images de drone en milieu littoral (2) : calculs de texture

Dans l’article précédent (https://www.sigterritoires.fr/index.php/classification-supervisee-dimages-de-drone-en-milieu-littoral-1-utilisation-de-la-texture/ ) nous avons vu comment calculer la matrice de co-occurrence de niveau gris (GLCM) qui est à la base des calculs de texture d’image.

Nous avions calculé les fréquences des paires de pixels présents dans notre fenêtre de calcul. Travailler avec des fréquences rend la comparaison entre fenêtrees diffcile. C’est pourquoi nous travaillerons avec une matrice « normalisée ».

Continuer la lecture de « Classification supervisée d’images de drone en milieu littoral (2) : calculs de texture »

Tutoriel classification d’images avec ArcMap: 2.5- Exploration des données

Les données de bandes multispectrales différentes ont souvent une corrélation très élevée et contiennent de l’information similaire. Par exemple, les capteurs de la bande 4 et 5 de Landsat MSS (vert et rouge respectivement) produisent des images d’apparence visuelle très semblable étant donné que la réflectance pour le même type de surface est presque identique. Des transformations d’images basées sur des traitements statistiques complexes des données multispectrales peuvent être utilisées pour réduire la redondance des données et la corrélation entre les bandes. L’analyse des composantes principales est une transformation de ce genre. Le but de cette transformation est de réduire le nombre de dimensions (nombre de bandes) et de produire une compression de l’information de plusieurs bandes dans un nombre plus restreint de bandes. Les « nouvelles » bandes qui résultent de cette compression statistique sont appelées composantes. Ce procédé vise à maximiser (statistiquement) la quantité d’information (ou variance) des données originales dans un nombre restreint de composantes. Par exemple, l’analyse des composantes principales, peut transformer des données provenant de sept bandes du capteur TM/Landsat (Thematic Mapper) de façon à ce que les trois principales composantes de la transformation contiennent plus de 90% de l’information contenue dans les sept bandes initiales. L’interprétation et l’analyse de ces trois composantes, en les combinant visuellement ou numériquement, est plus simple et plus efficace que l’utilisation des sept bandes initiales. L’analyse des composantes principales ou d’autres transformations complexes peuvent être utilisées comme techniques de rehaussement visuel pour faciliter l’interprétation ou pour réduire le nombre de bandes qui seront fournies comme données d’entrée à une procédure de classification numérique.

Continuer la lecture de « Tutoriel classification d’images avec ArcMap: 2.5- Exploration des données »

Tutoriel classification d’images avec ArcMap: 2.4- Création d’une image composite

Comme nous l’avons vu précédemment, les données satellitaires sont fournies sous forme d’images individuelles contenant chacune les valeurs correspondantes à une bande .

Pour que la classification d’image prenne en compte les valeurs de plusieurs bandes, il est nécessaire de créer un nouveau raster contenant les bandes souhaitées pour la classification. Vous pouvez choisir un nombre de bandes quelconque, mais au niveau de l’affichage vous ne pourrez sélectionner que trois bandes qui seront affichées en tant que bande rouge, verte et bleue, même si les bandes présentes ne correspondent pas à ces trois bandes.

Continuer la lecture de « Tutoriel classification d’images avec ArcMap: 2.4- Création d’une image composite »

Tutoriel classification d’images avec QGis: 2.2- Rehaussement des images

Pour commencer il faut bien comprendre que l’on applique le rehaussement des images afin de faciliter l’interprétation visuelle et la compréhension des images. Le rehaussement ne va pas changer les valeurs radiométriques des objets présents dans l’image, il va juste permettre à un observateur une meilleure vision de ces objets. Cette étape, donc, ne sert qu’à aider l’utilisateur à définir les échantillons d’apprentissage et les signatures à utiliser dans la classification.

Les images numériques ont l’avantage de nous permettre de manipuler assez facilement les valeurs enregistrées pour chaque pixel. Même s’il est possible d’effectuer les corrections radiométriques pour les effets de l’illumination solaire, les conditions atmosphériques et les caractéristiques des instruments utilisés avant de distribuer les images aux usagers, il peut s’avérer que l’image ne soit pas à son meilleur pour l’interprétation visuelle. Les systèmes de télédétection, et spécialement ceux qui utilisent une plate-forme spatiale, doivent être conçus de façon à pouvoir traiter les différents niveaux d’énergie propres aux cibles et à leur environnement, susceptibles d’être rencontrés dans une utilisation normale. Cette variation importante dans la réponse spectrale des différents types de cibles (ex. : forêt, désert, neige, eau, etc.) rend impossible l’application d’une correction radiométrique générale capable d’optimiser le contraste et les niveaux d’intensité dans chacune des conditions. Il faut donc faire un ajustement différent des tons en fonction de l’utilisation et de l’état de chacune des images.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2.2- Rehaussement des images »

Tutoriel classification d’images avec ArcMap: 2.2- Rehaussement des images

Pour commencer il faut bien comprendre que l’on applique le rehaussement des images afin de faciliter l’interprétation visuelle et la compréhension des images. Le rehaussement ne va pas changer les valeurs radiométriques des objets présents dans l’image, il va juste permettre à un observateur une meilleure vision de ces objets. Cette étape, donc, ne sert qu’à aider l’utilisateur à définir les échantillons d’apprentissage et les signatures à utiliser dans la classification.

Les images numériques ont l’avantage de nous permettre de manipuler assez facilement les valeurs enregistrées pour chaque pixel. Même s’il est possible d’effectuer les corrections radiométriques pour les effets de l’illumination solaire, les conditions atmosphériques et les caractéristiques des instruments utilisés avant de distribuer les images aux usagers, il peut s’avérer que l’image ne soit pas à son meilleur pour l’interprétation visuelle. Les systèmes de télédétection, et spécialement ceux qui utilisent une plate-forme spatiale, doivent être conçus de façon à pouvoir traiter les différents niveaux d’énergie propres aux cibles et à leur environnement, susceptibles d’être rencontrés dans une utilisation normale. Cette variation importante dans la réponse spectrale des différents types de cibles (ex. : forêt, désert, neige, eau, etc.) rend impossible l’application d’une correction radiométrique générale capable d’optimiser le contraste et les niveaux d’intensité dans chacune des conditions. Il faut donc faire un ajustement différent des tons en fonction de l’utilisation et de l’état de chacune des images.

Continuer la lecture de « Tutoriel classification d’images avec ArcMap: 2.2- Rehaussement des images »

Tutoriel classification d’images avec QGis: 2.1 Correction atmosphérique des images Landsat 8

Nous avons vu précédemment comment corriger les images Landsat pour avoir la réflectance TOA (top-of-atmosphere). Voilà un schéma qui va nous aider à comprendre la suite:

La réflectance que nous avons calculé est donc le % de lumière réfléchie par rapport à la totalité de la lumière visible incidente. Mais comme on le voit dans le schéma, le capteur du satellite mesure deux choses en même temps: la lumière réfléchie par nos cibles à la surface de la terre, plus la lumière diffusée par les particules en suspension dans l’air.

On peut pousser la correction atmosphérique des images satellites pour enlever la partie de lumière due à la diffusion.

Comme nous l’avons déjà dit, ceci n’a d’intérêt que si vous travaillez sur des images séparées dans le temps. Le pourcentage de diffusion étant le même pour l’ensemble d’une image, c’est du temps perdu de faire cette correction.

Continuer la lecture de « Tutoriel classification d’images avec QGis: 2.1 Correction atmosphérique des images Landsat 8 »

Tutoriel classification d’images avec ArcMap: 2.1 Correction atmosphérique des images Landsat 8

Nous avons vu précédemment comment corriger les images Landsat pour avoir la réflectance TOA (top-of-atmosphere). Voilà un schéma qui va nous aider à comprendre la suite:

La réflectance que nous avons calculé est donc le % de lumière réfléchie par rapport à la totalité de la lumière visible incidente. Mais comme on le voit dans le schéma, le capteur du satellite mesure deux choses en même temps: la lumière réfléchie par nos cibles à la surface de la terre, plus la lumière diffusée par les particules en suspension dans l’air.

On peut pousser la correction atmosphérique des images satellites pour enlever la partie de lumière due à la diffusion.

Comme nous l’avons déjà dit, ceci n’a d’intérêt que si vous travaillez sur des images séparées dans le temps. Le pourcentage de diffusion étant le même pour l’ensemble d’une image, c’est du temps perdu de faire cette correction.

Le mode d’emploi pour effectuer cette correction sur les images Landsat est disponible à l’adresse http://www.gisagmaps.com/landsat-8-atco-guide/ 

Mais si vous êtes débutant, vous aurez du mal à comprendre la marche à suivre. Nous allons la voir ici, en utilisant les outils d’ArcMap.

Continuer la lecture de « Tutoriel classification d’images avec ArcMap: 2.1 Correction atmosphérique des images Landsat 8 »